thermocouple.py 12.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
def thermocouple(tc_type,x,input_unit,output_unit=None) :
    """
    Converts thermocouple voltages into temperature, or vice versa.

    Accepts either single values or lists.

    Allowed thermocouple type tc_type are currently "E", "T", or "K"
    x is either the thermocouple voltage or temperature
    If input_unit = "C", "K", or "F", returns thermocouple emf.
    If input_unit = "V" or "mV", returns thermocouple temperature.
    Output_unit can be mV or V for emf, K, C, or F for temperature.

    Reference junction of thermocouple is at 0 C, i.e. ice water.
    Negative emfs correspond to temperatures below 0 C;
        positive emfs correspond to temperatures above 0 C. 

    Uses parameterizations found at http://srdata.nist.gov/its90/main/

    Copyright (c) 2011, 2012, 2014, 2015 University of Toronto
    Last Modification:  6 November 2015 by Eric Yeung (added Type E)
    Modified:           26 January 2014 by Michael Wainberg
                        3 March 2012 by David Bailey
    Original Version:   12 October 2011 by David Bailey
    Contact: David Bailey <dbailey@physics.utoronto.ca>
                        (http://www.physics.utoronto.ca/~dbailey)
    License: Released under the MIT License; the full terms are this license
                are appended to the end of this module, and are also available
                at http://www.opensource.org/licenses/mit-license.php.
    """

    import math

    # Initialize coefficients for calculating emf in millivolts for
    #   a given temperature in Celsius degrees
    c={}
    a={}
    # Initialize coefficients for calculating temperature in celsius degrees
    #   given a thermocouple emf in millivolts
    d={}
    # Initialize dictionaries for temperature and emf ranges for which
    #   conversions are valid
    t_range   = {}
    emf_range = {}

    # Type E Thermocouple values
    #   Uses polynomial parameterization found at
    #       http://srdata.nist.gov/its90/download/type_e.tab
    #           Retrieved 12 October 2011
    t_range["E"]   = [-270.0, 0.0, 1000.0, None]
    c["E"] = [
     [  # -270 to 0 degrees C
         0.000000000000E+00,
         0.586655087080E-01,
         0.454109771240E-04,
        -0.779980486860E-06,
        -0.258001608430E-07,
        -0.594525830570E-09,
        -0.932140586670E-11,
        -0.102876055340E-12,
        -0.803701236210E-15,
        -0.439794973910E-17,
        -0.164147763550E-19,
        -0.396736195160E-22,
        -0.558273287210E-25,
        -0.346578420130E-28
     ],[  # -0 to 1000 degrees C
         0.000000000000E+00,
         0.586655087100E-01,
         0.450322755820E-04,
         0.289084072120E-07,
        -0.330568966520E-09,
         0.650244032700E-12,
        -0.191974955040E-15,
        -0.125366004970E-17,
         0.214892175690E-20,
        -0.143880417820E-23,
         0.359608994810E-27
     ]
    ]
    a["E"] = [
         0.0,
         0.0,
         0.0
        ]

    emf_range["E"] = [-9.718, -8.825, 0.0, 76.373, None]
    d["E"] = [
     [ #    -9.718 to -8.825 mV, -250 to -200 degrees C
         20678,
         6889.2,
         762.19,
         28.285
     ],[  #   -8.825 to 0 mV, -200 to 0 degrees C, error range is -0.01 to 0.03C
         0.0000000E+00,
         1.6977288E+01,
        -4.3514970E-01,
        -1.5859697E-01,
        -9.2502871E-02,
        -2.6084314E-02,
        -4.1360199E-03,
        -3.4034030E-04,
        -1.1564890E-05,
         0.0000000E+00
     ],[ #   0 to 76.373mV, 0 to 1000 degrees C; error range is -0.02 to 0.02C
         0.0000000E+00,
         1.7057035E+01,
        -2.3301759E-01,
         6.5435585E-03,
        -7.3562749E-05,
        -1.7896001E-06,
         8.4036165E-08,
        -1.3735879E-09,
         1.0629823E-11,
        -3.2447087E-14
     ]
    ]


    # Type K Thermocouple values
    #   Uses polynomial parameterization found at
    #       http://srdata.nist.gov/its90/download/type_k.tab
    #           Retrieved 23 October 2011
    t_range["K"]   = [-270.0, 0.0, 1372.0, None]
    c["K"] = [
     [  # -270 to 0 degrees C
         0.000000000000E+00,
         0.394501280250E-01,
         0.236223735980E-04,
        -0.328589067840E-06,
        -0.499048287770E-08,
        -0.675090591730E-10,
        -0.574103274280E-12,
        -0.310888728940E-14,
        -0.104516093650E-16,
        -0.198892668780E-19,
        -0.163226974860E-22
     ],[  # -0 to 1372 degrees C
        -0.176004136860E-01,
         0.389212049750E-01,
         0.185587700320E-04,
        -0.994575928740E-07,
         0.318409457190E-09,
        -0.560728448890E-12,
         0.560750590590E-15,
        -0.320207200030E-18,
         0.971511471520E-22,
        -0.121047212750E-25
     ]
    ]

    a["K"] = [
         0.118597600000E+00,
        -0.118343200000E-03,
         0.126968600000E+03
        ]

    emf_range["K"] = [-5.891, 0.0, 20.644, 54.886]
    d["K"] = [
     [  #   -5.891 to 0 mV, -200 to 0 degrees C, error range is -0.02 to 0.04C
         0.0000000E+00,
         2.5173462E+01,
        -1.1662878E+00,
        -1.0833638E+00,
        -8.9773540E-01,
        -3.7342377E-01,
        -8.6632643E-02,
        -1.0450598E-02,
        -5.1920577E-04,
         0.0000000E+00
     ],[ #   0 to 20.644mV, 0 to 500 degrees C; error range is -0.05 to 0.04C
         0.000000E+00,
         2.508355E+01,
         7.860106E-02,
        -2.503131E-01,
         8.315270E-02,
        -1.228034E-02,
         9.804036E-04,
        -4.413030E-05,
         1.057734E-06,
        -1.052755E-08
     ],[ #   20.644mV to 54.886, 500 to 1372 C; error range -0.05 to 0.06C
        -1.318058E+02,
         4.830222E+01,
        -1.646031E+00,
         5.464731E-02,
        -9.650715E-04,
         8.802193E-06,
        -3.110810E-08,
         0.000000E+00,
         0.000000E+00,
         0.000000E+00
     ]
    ]

    # Type T Thermocouple values
    #   Uses polynomial parameterization found at
    #       http://srdata.nist.gov/its90/download/type_t.tab
    #           Retrieved 3 November 2015
    t_range["T"]   = [-270.0, 0.0, 400, None]
    c["T"] = [
     [  # -270 to 0 degrees C
         0.000000000000E+00,
         0.387481063640E-01,
         0.441944343470E-04,
         0.118443231050E-06,
         0.200329735540E-07,
         0.901380195590E-09,
         0.226511565930E-10,
         0.360711542050E-12,
         0.384939398830E-14,
         0.282135219250E-16,
         0.142515947790E-18,
         0.487686622860E-21,
         0.107955392700E-23,
         0.139450270620E-26,
         0.797951539270E-30
     ],[  # -0 to 400 degrees C
         0.000000000000E+00,
         0.387481063640E-01,
         0.332922278800E-04,
         0.206182434040E-06,
        -0.218822568460E-08,
         0.109968809280E-10,
        -0.308157587720E-13,
         0.454791352900E-16,
        -0.275129016730E-19
     ]
    ]
    a["T"] = [
         0.0,
         0.0,
         0.0
        ]

    emf_range["T"] = [-5.603, 0.0, 20.872, None]
    d["T"] = [
     [ #    -5.603 to -0 mV, -200 to 0 degrees C; error range is -0.02 to 0.04C
         0.0000000E+00,
         2.5949192E+01,
        -2.1316967E-01,
         7.9018692E-01,
         4.2527777E-01,
         1.3304473E-01,
         2.0241446E-02,
         1.2668171E-03
     ],[ #   0 to 20.872 mV, 0 to 400 degrees C; error range is -0.03 to 0.03C
         0.000000E+00,
         2.592800E+01,
        -7.602961E-01,
         4.637791E-02,
        -2.165394E-03,
         6.048144E-05,
        -7.293422E-07,
         0.000000E+00
     ]
    ]

    # Based on "input_unit", define conversion to be done
    #    The parameterizations assume temperature in C, emf in mV.
    if input_unit == "C" :
        temperature = x
        if output_unit == "mV" or output_unit == "V" or output_unit == None :
            if output_unit == None :
                output_unit = "mV"
            return_emf = True
        else :
            def wrong_output_unit() :
                # The output unit must be a known unit, and if the input is
                #     temperature, the output should be emf, and vice versa.
                print(("The output unit,'{0:s}', is either unrecognized or is "
                   + "the same quantity as the input unit").format(output_unit))
            wrong_output_unit()
            return None
    elif input_unit == "K" :
        temperature = x - 273.15
        if output_unit == "mV" or output_unit == "V" or output_unit == None :
            if output_unit == None :
                output_unit = "mV"
            return_emf = True
        else :
            wrong_output_unit()
            return None
    elif input_unit == "F" :
        temperature = (x - 32.0)*5./9.
        return_emf = True
    elif input_unit == "mV" :
        emf = x
        return_emf = False
    elif input_unit == "V" :
        emf = 1000.0*x
        return_emf = False
    else :
        print(("'{0:s}' is an unrecognized unit,"
              +" should be 'C', 'K', 'F', 'mV', or 'V'").format(input_unit))
        return None
    # Check if a valid thermocouple type
    invalid_thermocouple = True
    for k in emf_range.keys():
        if tc_type == k :
            invalid_thermocouple = False
    if invalid_thermocouple :
        return("'{0:s}' is not a recognized theromocouple type".format(tc_type))

    # Given temperature, return emf
    if return_emf :
        # Initialize temperature and emf (electromotive force, "voltage")
        try:
            # Create emf array if temperature is an array
            t= temperature
            v = len(temperature)*[0.0]
        except TypeError:
            t = [temperature]
            v = [0.0]
        for i in range(len(t)) :
            temperature_index = -1
            for j in range(len(t_range[tc_type])-1) :
                if t[i] >= t_range[tc_type][j] and t[i] < t_range[tc_type][j+1] :
                    temperature_index = j
                    break
            if temperature_index == -1 :
                return(("Temperature ({0:f} C) is outside allowed range for "+
                       "Type {1:s} thermocouple").format(t[i],tc_type))
            for j in range(len(c[tc_type][temperature_index])) :
                v[i] += c[tc_type][temperature_index][j]*t[i]**j
            v[i] += a[tc_type][0]*math.exp(
                a[tc_type][1]*(t[i]-a[tc_type][2])**2)
            if output_unit == "V" :
                v[i] = v[i]/1000.0
        if len(v) == 1 :
            # Return a value, not an array, if temperature was not an array
            return v[0]
        else :
            return v

    # Given emf, return temperature
    else :
        try:
            # Create emf array if temperature is an array
            v= emf
            t = len(emf)*[0.0]
        except TypeError:
            v = [emf]
            t = [0.0]
        for i in range(len(v)) :
            emf_index = -1
            for j in range(len(emf_range[tc_type])-1) :
                if v[i] >= emf_range[tc_type][j] and v[i] < emf_range[tc_type][j+1] :
                    emf_index = j
                    break
            if emf_index == -1 :
                return(("EMF ({0:f} mV) is outside allowed range for "+
                       "Type {1:s} thermocouple").format(v[i], tc_type))
            for j in range(len(d[tc_type][emf_index])) :
                t[i] += d[tc_type][emf_index][j]*v[i]**j
            # Note that temperature is returning in Kelvin, not Celsius
            if output_unit == "K" :
                t[i] += 273.15
            elif output_unit == "F" :
                t[i] = t[i]*9./5. + 32.0
        if len(t) == 1 :
            # Return a value, not an array, if emf was not an array
            return t[0]
        else :
            return t

"""
Full text of MIT License:

    Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""