RTClib.cpp 9.17 KB
Newer Older
Nelso Jost's avatar
Nelso Jost committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
// Code by JeeLabs http://news.jeelabs.org/code/
// Released to the public domain! Enjoy!

#include <Wire.h>
#include "RTClib.h"
#ifdef __AVR__
 #include <avr/pgmspace.h>
 #define WIRE Wire
#else
 #define PROGMEM
 #define pgm_read_byte(addr) (*(const unsigned char *)(addr))
 #define WIRE Wire1
#endif

#define DS1307_ADDRESS  0x68
#define DS1307_CONTROL  0x07
#define DS1307_NVRAM    0x08
#define SECONDS_PER_DAY 86400L

#define SECONDS_FROM_1970_TO_2000 946684800

#if (ARDUINO >= 100)
 #include <Arduino.h> // capital A so it is error prone on case-sensitive filesystems
 // Macro to deal with the difference in I2C write functions from old and new Arduino versions.
 #define _I2C_WRITE write
 #define _I2C_READ  read
#else
 #include <WProgram.h>
 #define _I2C_WRITE send
 #define _I2C_READ  receive
#endif

////////////////////////////////////////////////////////////////////////////////
// utility code, some of this could be exposed in the DateTime API if needed

const uint8_t daysInMonth [] PROGMEM = { 31,28,31,30,31,30,31,31,30,31,30,31 };

// number of days since 2000/01/01, valid for 2001..2099
static uint16_t date2days(uint16_t y, uint8_t m, uint8_t d) {
    if (y >= 2000)
        y -= 2000;
    uint16_t days = d;
    for (uint8_t i = 1; i < m; ++i)
        days += pgm_read_byte(daysInMonth + i - 1);
    if (m > 2 && y % 4 == 0)
        ++days;
    return days + 365 * y + (y + 3) / 4 - 1;
}

static long time2long(uint16_t days, uint8_t h, uint8_t m, uint8_t s) {
    return ((days * 24L + h) * 60 + m) * 60 + s;
}

////////////////////////////////////////////////////////////////////////////////
// DateTime implementation - ignores time zones and DST changes
// NOTE: also ignores leap seconds, see http://en.wikipedia.org/wiki/Leap_second

DateTime::DateTime (uint32_t t) {
  t -= SECONDS_FROM_1970_TO_2000;    // bring to 2000 timestamp from 1970

    ss = t % 60;
    t /= 60;
    mm = t % 60;
    t /= 60;
    hh = t % 24;
    uint16_t days = t / 24;
    uint8_t leap;
    for (yOff = 0; ; ++yOff) {
        leap = yOff % 4 == 0;
        if (days < 365 + leap)
            break;
        days -= 365 + leap;
    }
    for (m = 1; ; ++m) {
        uint8_t daysPerMonth = pgm_read_byte(daysInMonth + m - 1);
        if (leap && m == 2)
            ++daysPerMonth;
        if (days < daysPerMonth)
            break;
        days -= daysPerMonth;
    }
    d = days + 1;
}

DateTime::DateTime (uint16_t year, uint8_t month, uint8_t day, uint8_t hour, uint8_t min, uint8_t sec) {
    if (year >= 2000)
        year -= 2000;
    yOff = year;
    m = month;
    d = day;
    hh = hour;
    mm = min;
    ss = sec;
}

DateTime::DateTime (const DateTime& copy):
  yOff(copy.yOff),
  m(copy.m),
  d(copy.d),
  hh(copy.hh),
  mm(copy.mm),
  ss(copy.ss)
{}

static uint8_t conv2d(const char* p) {
    uint8_t v = 0;
    if ('0' <= *p && *p <= '9')
        v = *p - '0';
    return 10 * v + *++p - '0';
}

// A convenient constructor for using "the compiler's time":
//   DateTime now (__DATE__, __TIME__);
// NOTE: using F() would further reduce the RAM footprint, see below.
DateTime::DateTime (const char* date, const char* time) {
    // sample input: date = "Dec 26 2009", time = "12:34:56"
    yOff = conv2d(date + 9);
    // Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
    switch (date[0]) {
        case 'J': m = date[1] == 'a' ? 1 : m = date[2] == 'n' ? 6 : 7; break;
        case 'F': m = 2; break;
        case 'A': m = date[2] == 'r' ? 4 : 8; break;
        case 'M': m = date[2] == 'r' ? 3 : 5; break;
        case 'S': m = 9; break;
        case 'O': m = 10; break;
        case 'N': m = 11; break;
        case 'D': m = 12; break;
    }
    d = conv2d(date + 4);
    hh = conv2d(time);
    mm = conv2d(time + 3);
    ss = conv2d(time + 6);
}

// A convenient constructor for using "the compiler's time":
// This version will save RAM by using PROGMEM to store it by using the F macro.
//   DateTime now (F(__DATE__), F(__TIME__));
DateTime::DateTime (const __FlashStringHelper* date, const __FlashStringHelper* time) {
    // sample input: date = "Dec 26 2009", time = "12:34:56"
    char buff[11];
    memcpy_P(buff, date, 11);
    yOff = conv2d(buff + 9);
    // Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    switch (buff[0]) {
        case 'J': m = buff[1] == 'a' ? 1 : m = buff[2] == 'n' ? 6 : 7; break;
        case 'F': m = 2; break;
        case 'A': m = buff[2] == 'r' ? 4 : 8; break;
        case 'M': m = buff[2] == 'r' ? 3 : 5; break;
        case 'S': m = 9; break;
        case 'O': m = 10; break;
        case 'N': m = 11; break;
        case 'D': m = 12; break;
    }
    d = conv2d(buff + 4);
    memcpy_P(buff, time, 8);
    hh = conv2d(buff);
    mm = conv2d(buff + 3);
    ss = conv2d(buff + 6);
}

uint8_t DateTime::dayOfWeek() const {    
    uint16_t day = date2days(yOff, m, d);
    return (day + 6) % 7; // Jan 1, 2000 is a Saturday, i.e. returns 6
}

uint32_t DateTime::unixtime(void) const {
  uint32_t t;
  uint16_t days = date2days(yOff, m, d);
  t = time2long(days, hh, mm, ss);
  t += SECONDS_FROM_1970_TO_2000;  // seconds from 1970 to 2000

  return t;
}

long DateTime::secondstime(void) const {
  long t;
  uint16_t days = date2days(yOff, m, d);
  t = time2long(days, hh, mm, ss);
  return t;
}

DateTime DateTime::operator+(const TimeSpan& span) {
  return DateTime(unixtime()+span.totalseconds());
}

DateTime DateTime::operator-(const TimeSpan& span) {
  return DateTime(unixtime()-span.totalseconds());
}

TimeSpan DateTime::operator-(const DateTime& right) {
  return TimeSpan(unixtime()-right.unixtime());
}

////////////////////////////////////////////////////////////////////////////////
// TimeSpan implementation

TimeSpan::TimeSpan (int32_t seconds):
  _seconds(seconds)
{}

TimeSpan::TimeSpan (int16_t days, int8_t hours, int8_t minutes, int8_t seconds):
  _seconds(days*86400L + hours*3600 + minutes*60 + seconds)
{}

TimeSpan::TimeSpan (const TimeSpan& copy):
  _seconds(copy._seconds)
{}

TimeSpan TimeSpan::operator+(const TimeSpan& right) {
  return TimeSpan(_seconds+right._seconds);
}

TimeSpan TimeSpan::operator-(const TimeSpan& right) {
  return TimeSpan(_seconds-right._seconds);
}

////////////////////////////////////////////////////////////////////////////////
// RTC_DS1307 implementation

static uint8_t bcd2bin (uint8_t val) { return val - 6 * (val >> 4); }
static uint8_t bin2bcd (uint8_t val) { return val + 6 * (val / 10); }

uint8_t RTC_DS1307::begin(void) {
  return 1;
}

uint8_t RTC_DS1307::isrunning(void) {
  WIRE.beginTransmission(DS1307_ADDRESS);
  WIRE._I2C_WRITE(0);
  WIRE.endTransmission();

  WIRE.requestFrom(DS1307_ADDRESS, 1);
  uint8_t ss = WIRE._I2C_READ();
  return !(ss>>7);
}

void RTC_DS1307::adjust(const DateTime& dt) {
  WIRE.beginTransmission(DS1307_ADDRESS);
  WIRE._I2C_WRITE(0);
  WIRE._I2C_WRITE(bin2bcd(dt.second()));
  WIRE._I2C_WRITE(bin2bcd(dt.minute()));
  WIRE._I2C_WRITE(bin2bcd(dt.hour()));
  WIRE._I2C_WRITE(bin2bcd(0));
  WIRE._I2C_WRITE(bin2bcd(dt.day()));
  WIRE._I2C_WRITE(bin2bcd(dt.month()));
  WIRE._I2C_WRITE(bin2bcd(dt.year() - 2000));
  WIRE._I2C_WRITE(0);
  WIRE.endTransmission();
}

DateTime RTC_DS1307::now() {
  WIRE.beginTransmission(DS1307_ADDRESS);
  WIRE._I2C_WRITE(0);	
  WIRE.endTransmission();

  WIRE.requestFrom(DS1307_ADDRESS, 7);
  uint8_t ss = bcd2bin(WIRE._I2C_READ() & 0x7F);
  uint8_t mm = bcd2bin(WIRE._I2C_READ());
  uint8_t hh = bcd2bin(WIRE._I2C_READ());
  WIRE._I2C_READ();
  uint8_t d = bcd2bin(WIRE._I2C_READ());
  uint8_t m = bcd2bin(WIRE._I2C_READ());
  uint16_t y = bcd2bin(WIRE._I2C_READ()) + 2000;
  
  return DateTime (y, m, d, hh, mm, ss);
}

Ds1307SqwPinMode RTC_DS1307::readSqwPinMode() {
  int mode;

  WIRE.beginTransmission(DS1307_ADDRESS);
  WIRE._I2C_WRITE(DS1307_CONTROL);
  WIRE.endTransmission();
  
  WIRE.requestFrom((uint8_t)DS1307_ADDRESS, (uint8_t)1);
  mode = WIRE._I2C_READ();

  mode &= 0x93;
  return static_cast<Ds1307SqwPinMode>(mode);
}

void RTC_DS1307::writeSqwPinMode(Ds1307SqwPinMode mode) {
  WIRE.beginTransmission(DS1307_ADDRESS);
  WIRE._I2C_WRITE(DS1307_CONTROL);
  WIRE._I2C_WRITE(mode);
  WIRE.endTransmission();
}

void RTC_DS1307::readnvram(uint8_t* buf, uint8_t size, uint8_t address) {
  int addrByte = DS1307_NVRAM + address;
  WIRE.beginTransmission(DS1307_ADDRESS);
  WIRE._I2C_WRITE(addrByte);
  WIRE.endTransmission();
  
  WIRE.requestFrom((uint8_t) DS1307_ADDRESS, size);
  for (uint8_t pos = 0; pos < size; ++pos) {
    buf[pos] = WIRE._I2C_READ();
  }
}

void RTC_DS1307::writenvram(uint8_t address, uint8_t* buf, uint8_t size) {
  int addrByte = DS1307_NVRAM + address;
  WIRE.beginTransmission(DS1307_ADDRESS);
  WIRE._I2C_WRITE(addrByte);
  for (uint8_t pos = 0; pos < size; ++pos) {
    WIRE._I2C_WRITE(buf[pos]);
  }
  WIRE.endTransmission();
}

uint8_t RTC_DS1307::readnvram(uint8_t address) {
  uint8_t data;
  readnvram(&data, 1, address);
  return data;
}

void RTC_DS1307::writenvram(uint8_t address, uint8_t data) {
  writenvram(address, &data, 1);
}

////////////////////////////////////////////////////////////////////////////////
// RTC_Millis implementation

long RTC_Millis::offset = 0;

void RTC_Millis::adjust(const DateTime& dt) {
    offset = dt.unixtime() - millis() / 1000;
}

DateTime RTC_Millis::now() {
  return (uint32_t)(offset + millis() / 1000);
}

////////////////////////////////////////////////////////////////////////////////